Classification of Road Damage from Digital Image Using Backpropagation Neural Network
نویسندگان
چکیده
منابع مشابه
An Adaboost-Backpropagation Neural Network for Automated Image Sentiment Classification
The development of multimedia technology and the popularisation of image capture devices have resulted in the rapid growth of digital images. The reliance on advanced technology to extract and automatically classify the emotional semantics implicit in images has become a critical problem. We proposed an emotional semantic classification method for images based on the Adaboost-backpropagation (B...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Digital Image Inpainting Using Cellular Neural Network
Digital Image inpainting methods provide a means for reconstruction of small damaged portions of an image. Image or video resources are often received in poor conditions, mostly with noise or defects making the resources difficult to read and understand. Some methods are presented that can be used for the reconstruction of damaged or partially known images. We propose an effective algorithm wit...
متن کاملImage Classification using Convolutional Neural Network
Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Inspired by a blog post [1], we tried to predict the probability of an image getting a high number of likes on Instagram. We modified a pre-trained AlexNet ImageNet CNN model using Caffe on a new dataset of Instagram images with hashtag ‘me’ to predict the likability of photo...
متن کاملLearning Neural Network Architectures using Backpropagation
Deep neural networks with millions of parameters are at the heart of many state of the art machine learning models today. However, recent works have shown that models with much smaller number of parameters can also perform just as well. In this work, we introduce the problem of architecture-learning, i.e; learning the architecture of a neural network along with weights. We start with a large ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IAES International Journal of Artificial Intelligence (IJ-AI)
سال: 2017
ISSN: 2252-8938,2089-4872
DOI: 10.11591/ijai.v6.i4.pp159-165